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COURS : INTRODUCTION À LA PROGRAMMATION DYNAMIQUE 
 
Vous avez vu en première année deux manières de programmer des algorithmes : la 
méthode « diviser pour régner » et celle des algorithmes gloutons. La première méthode 
consiste à diviser un problème en sous-problèmes indépendants qu’on résout puis qu’on 
combine, tandis que les algorithmes gloutons construisent une solution étape par étape en 
faisant à chaque fois un choix localement optimal sans revenir en arrière. Ces méthodes ne 
couvrent pas tous les problèmes de calcul que l’on peut rencontrer. 
 
Nous allons introduire dans ce cours une troisième méthode : la programmation dynamique. 
C’est une technique particulièrement puissante, car elle conduit souvent à des solutions 
efficaces. 
 
Ici, nous allons étudier un algorithme faisant partie des « grands classiques » afin 
d’apprendre le fonctionnement de cette méthode. 
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I) PROBLÈME DE L’ENSEMBLE INDÉPENDANT PONDÉRÉ 

Nous allons concevoir depuis zéro un algorithme pour un problème de calcul concret et 
délicat, ce qui nous forcera à développer un certain nombre de nouvelles idées. Une fois que 
nous aurons résolu le problème, nous identifierons les ingrédients de notre solution qui 
illustrent les principes généraux de la programmation dynamique. 
 

I.1. Définition du problème 

Pour décrire le problème, soit G = (V, E) un graphe non orienté. Un ensemble indépendant 
de G est un sous-ensemble S ⊆ V de sommets mutuellement non adjacents : pour tous v, w 

dans S, on a (v, w)  E. Autrement dit, un ensemble indépendant ne contient pas les deux 
extrémités d’une même arête de G. 
 
Par exemple, si les sommets représentent des personnes et les arêtes des paires de 
personnes qui ne s’aiment pas, les ensembles indépendants correspondent aux groupes de 
personnes qui s’entendent tous bien. Ou encore, si les sommets représentent des cours que 
vous envisagez de suivre et qu’il y a une arête entre chaque paire de cours en conflit, les 
ensembles indépendants correspondent aux emplois du temps réalisables (en supposant 
que vous ne puissiez pas être à deux endroits à la fois). 
 
Par exemple, le graphe de gauche ci-dessous possède six ensembles indépendants : 
l’ensemble vide et les cinq singletons. Celui de droite possède les mêmes ensembles, plus 
cinq autres ensembles indépendants de dimension 2 : {A, C}, {B, D}, {C, E}, {D, A} et {E, B}. 

 
Figure 1 : Exemples de graphe 

Le problème de l’ensemble indépendant pondéré (Weighted Independent Set – WIS) 
s’énonce ainsi : 

Problème : Ensemble indépendant pondéré (WIS) 
 

Entrée : Un graphe non orienté G = (V, E) et un poids non négatif wv pour chaque 
sommet v ∈ V. 
 
Sortie : Un ensemble indépendant S ⊆ V de G ayant la somme de poids des sommets 
∑ 𝑤𝑣𝑣∈𝑆  aussi grande que possible. 
 

Une solution optimale au problème de l’ensemble indépendant pondéré (WIS) est appelée 
ensemble indépendant de poids maximal (Maximum WIS – MWIS). Par exemple, si les 
sommets représentent des cours, les poids des sommets représentent le nombre d’unités, et 
les arêtes représentent les conflits entre les cours, alors le MWIS correspond à l’emploi du 
temps réalisable avec la charge la plus lourde (en unités). 
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Le problème de l’ensemble indépendant pondéré est difficile même dans le cas simple des 
chemins. Par exemple, une instance du problème pourrait ressembler à ceci (avec les 
sommets étiquetés par leurs poids) : 

 
Figure 2 : Problème WIS sous forme d'un chemin 

Ce graphe possède 8 ensembles indépendants : {}, {A}, {B}, {C}, {D}, {A, C}, {A, D} et {B, D}. 
Le dernier de ces ensembles possède le plus grand poids total, égal à 8. Le nombre 
d’ensembles indépendants d’un graphe chemin croît exponentiellement avec le nombre de 
sommets, donc il n’y a aucun espoir de résoudre le problème par recherche exhaustive, sauf 
pour les toutes petites instances. 
 

I.2. Que donnerait un algorithme glouton sur ce cas ? 

Pour de nombreux problèmes de calcul, les algorithmes gloutons sont un excellent point de 
départ. De tels algorithmes sont généralement faciles à imaginer, et même lorsqu’ils ne 
parviennent pas à résoudre le problème (ce qui arrive souvent), la manière dont ils échouent 
peut aider à mieux comprendre les subtilités du problème. 
 
Pour le problème WIS, l’algorithme glouton le plus naturel est sans doute celui-ci : on 
parcourt une seule fois les sommets, du meilleur (poids le plus élevé) au pire (poids le plus 
faible), en ajoutant un sommet à la solution courante tant qu’il n’entre pas en conflit avec un 
sommet déjà choisi. 
 
Dans l’exemple de la figure 2, la première itération de l’algorithme glouton choisirait donc le 
sommet de poids maximum 5, c’est-à-dire « C ». Puisque les sommets avec les poids juste 
au-dessous de 5 (« D » et « B ») ne sont pas indépendants de « C », l’algorithme choisirait 
ensuite d’ajouter « A » à « C » et renverrait donc l’ensemble {C, A} dont le poids total est 6, 
et qui n’est pas la solution optimale. 
 

I.3. Approche « diviser pour régner » 

La conception d’algorithmes « diviser pour régner » vaut toujours la peine d’être essayée 
pour les problèmes où il existe un moyen naturel de découper l’entrée en sous-problèmes 
plus petits. 
 
Pour le problème WIS avec un graphe chemin G = (V, E) comme entrée, l’approche naturelle 
pourrait être : 
 

Problème de l’ensemble indépendant pondéré : approche « Diviser pour mieux régner » 

G1 := Première moitié de G 
G2 := Seconde moitié de G 
S1 := Résoudre de manière récursive le problème sur G1 
S2 := Résoudre de manière récursive le problème sur G2 
Combiner S1, S2 en une solution S pour G 
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Le problème va se poser dans l’étape de combinaison. Le premier et le deuxième appel 
récursif remontent les solutions optimales « B » et « C », mais leur combinaison ne forme 
pas un ensemble indépendant : 

 
Figure 3 : Méthode "Diviser pour mieux régner" sur le problème WIS 

On peut désamorcer un conflit à la frontière lorsque le graphe d’entrée n’a que quatre 
sommets mais quand il en a des centaines ou des milliers, cela devient très compliqué. 

II) ALGORITHME LINÉAIRE POUR LE PROBLÈME 

II.1. Sous-structure optimale 

Idéalement, une solution optimale doit être construite d’une manière déterminée à partir de 
solutions optimales de sous-problèmes plus petits, réduisant ainsi le champ des candidats à 
un nombre gérable. 
 
Plus concrètement, prenons G = (V, E) le graphe de type chemin à n sommets, avec les arêtes 
(v1, v2), (v2, v3), …, (vn−2, vn−1), (vn−1, vn) et un poids non négatif wi pour chaque sommet vi ∈ V. 
Supposons que n ≥ 2 ; sinon, la réponse est évidente : 

 
Figure 4 : Graphe G = (V, E) de type chemin à n sommets 

Supposons connu un ensemble indépendant pondéré S ⊆ V, qui est une solution optimale du 
problème et dont le poids total est W. Deux cas sont possibles : S ne contient pas le dernier 
sommet vn, soit il le contient. Examinons ces deux cas. 
 

Cas n°1 : vn  S. Supposons que la solution optimale S n’inclue pas le dernier sommet vn. 

On obtient le graphe de type chemin à (n – 1) sommets Gn−1 à partir de G en retirant le 
dernier sommet vn et la dernière arête (vn−1, vn). Comme S n’inclut pas le dernier sommet de 
G, il ne contient que des sommets de Gn−1 et S peut donc être considéré comme un 
ensemble indépendant de Gn−1 (toujours de poids total W) :  

 
Ainsi, une fois que l’on sait qu’une solution optimale exclut le dernier sommet, on sait 
exactement à quoi elle ressemble : c’est la solution optimale du graphe plus petit Gn−1. 

Si S (de poids total W) est solution optimale de G et vn  S 

 S (de poids total W) est solution optimale de Gn-1 
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Cas n°2 : vn  S. Supposons que la solution optimale S inclue le dernier sommet vn. 

Comme S est un ensemble indépendant, S ne peut pas contenir deux sommets consécutifs 

du chemin, donc il exclut l’avant-dernier sommet : vn−1  S. On obtient le graphe de type 
chemin à (n – 2) sommets Gn−2 à partir de G en retirant les deux derniers sommets et arêtes 
(si n = 2, on interprète G0 comme le graphe vide avec un poids total de 0). 

 
Comme S contient vn et que Gn−2 ne le contient pas, on ne peut pas considérer S comme un 
ensemble indépendant de Gn−2 et donc comme une solution optimale de Gn-2. Mais après 
avoir retiré le dernier sommet de S, on peut le faire : S − {vn} ne contient ni vn−1 ni vn et peut 
donc être considéré comme un ensemble indépendant du graphe plus petit Gn−2 (avec un 
poids total W − wn). 
 
Ainsi, une fois que l’on sait qu’une solution optimale inclut le dernier sommet, on sait 
exactement à quoi elle ressemble : c’est la solution optimale du graphe plus petit Gn−2, 
complété par le dernier sommet vn. 

Si S (de poids total W) est solution optimale de G et vn  S 

 S − {vn} (de poids total W – wn) est solution optimale de Gn-2 

 S (de poids total W) est solution optimale de Gn-2  {vn} 

 

II.2. Équation de récurrence sur les valeurs optimales 

On a isolé les deux seules possibilités pour une solution, donc celle des deux dont le poids 
total est le plus grand est la solution optimale. Nous avons donc une récurrence pour le 
poids total d’une solution optimale à notre problème : 
 

Récurrence sur le poids de la solution optimale 

Soit Wi le poids total d’une solution optimale d’un ensemble indépendant pondéré de Gi 
(quand i = 0, on interprète W0 comme 0). Alors, pour tout i = 2, 3, …, n : 

1 2

cas 1 cas 2

max ,
i i i i

W W W w
− −

  
= + 

  
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II.3. Approche récursive naïve 

Nous avons réduit le champ des possibles à seulement deux candidats pour la solution 
optimale. Dans le pseudocode suivant, on va essayer les deux options et retourner la 
meilleure. Les graphes Gn−1 et Gn−2 sont définis comme précédemment : 

 

Algorithme récursif pour le problème du meilleur ensemble indépendant pondéré 

Entrée :  Un graphe de type chemin G avec l’ensemble de sommets {v1, v2, …, vn} et un 
poids non négatif wi pour chaque sommet vi. 

Sortie : Un ensemble indépendant de poids maximal de G. 

Si n = 0 alors :                    # cas de base 

Retourner {} 
Si n = 1 alors :                    # cas de base 

Retourner {v1}  

# Récursion lorsque n 2 

S1 := calculer récursivement la solution optimale de Gn-1 
S2 := calculer récursivement la solution optimale de Gn-2 

Retourner S1 ou S2  {vn}, selon lequel a le poids le plus élevé 

 
Le schéma de récursion ressemble à la figure 5 (on cherche S = MWIS de [A, B, C, D]) : 

 
Figure 5 : Exemple d'arbre de récursion pour la recherche d'un MWIS (en vert : les cas de base) 

Le schéma de récursion ressemble à celui des algorithmes de type diviser pour régner en 
temps O(n log n) comme « MergeSort », avec deux appels récursifs suivis d’une étape de 
combinaison simple. Mais il y a une grande différence : l’algorithme « MergeSort » écarte la 
moitié de l’entrée avant de lancer la récursion, alors que notre algorithme récursif n’élimine 
qu’un ou deux sommets (sur des milliers voire des millions). 
 
Les deux algorithmes ont des arbres de récursion avec un facteur de branchement égal à 2. 
Le premier possède environ log2n niveaux, la récursion s’arrête quand il arrive à des sous-
tableaux de taille 1 (cas de base). Chaque appel tout en bas de l’arbre de récursion 
correspond donc à trier un sous-tableau qui ne contient qu’un seul élément. Il y a donc 
environ n appels au niveau du bas de l’arbre, donc un temps en O(n log n). 
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Dans le deuxième, chaque niveau de récursivité ne peut enlever qu’au plus 2 sommets. Si on 
descend de k niveaux dans l’arbre de récursion, on aura enlevé au plus 2∙k sommets. Donc 
pour partir de n sommets et arriver à 0 ou 1 sommet et donc aux cas de base, il faut au 
moins descendre jusqu’au niveau n/2. Tous les nœuds jusqu’au niveau (n/2 – 1) sont donc 
des nœuds internes qui se ramifient encore. Le nombre de nœuds peut donc aller jusqu’à 
2n/2 au niveau n/2. Pour cet algorithme récursif, le temps d’exécution est exponentiel : il faut 
au moins un nombre d’appels récursifs proportionnel à 2n/2. Autrement dit, le temps explose 

comme 2n/2 = (2)n = 1,414n quand n grandit. 
 
Plus exactement, la récurrence du nombre d’appels T(n) est de la forme : 

𝑇(𝑛) = 𝑇(𝑛 − 1) + 𝑇(𝑛 − 2) + 𝑂(1) 

… qui est exactement la récurrence de Fibonacci. La solution est T(n) = O(n), avec  =
1+√5

2
≈ 1,618. 

 

II.4. Récursion avec un cache mémoire (mémoïsation) 

L’algorithme précédent n’est donc pas meilleur qu’une recherche exhaustive, mais on peut 
se demander, parmi l’ensemble des appels récursifs, combien de graphes d’entrée distincts 
sont réellement examinés. 
 
Soit un, soit deux sommets et arêtes sont retirés à la fin du graphe. Ainsi, un invariant tout 
au long de la récursion est que chaque appel récursif 
reçoit en entrée un certain préfixe Gi comme graphe 
d’entrée, où Gi désigne les i premiers sommets et les 
(i – 1) premières arêtes du graphe d’entrée original 
(et G0 désigne le graphe vide). 

 
Il n’existe que (n + 1) graphes de ce type (G0, G1, G2, …, Gn), où n est le nombre de sommets 
du graphe d’entrée. Par conséquent, seulement (n + 1) sous-problèmes distincts sont 
réellement résolus parmi l’exponentiel nombre de différents appels récursifs. 
 
Cela montre que le temps d’exécution exponentiel de l’algorithme récursif provient 
uniquement de la redondance des sous-problèmes à traiter. La première fois que l’on résout 
un sous-problème, l’idée est donc d’enregistrer le résultat dans un cache une bonne fois 
pour toutes. Ainsi, si l’on rencontre le même sous-problème plus tard, on peut simplement 
retrouver sa solution dans le cache en temps constant. 
 
Les résultats des calculs précédents sont donc stockés dans un tableau global de longueur (n 
+ 1), où A[i] contient une solution optimale de Gi, Gi désignant les i premiers sommets et les 
(i – 1) premières arêtes du graphe d’entrée original (et G0 est le graphe vide). L’algorithme 
vérifie d’abord si le tableau A contient déjà la solution pertinente S1 ; sinon, il calcule S1 
récursivement comme avant et met le résultat en cache dans A. De même pour S2. 
 
Chacun des (n + 1) sous-problèmes n’est désormais résolu à partir de zéro qu’une seule fois. 
Correctement implémenté, le temps d’exécution passe d’exponentiel à linéaire. Cette forme 
particulière d’utilisation d’un cache dans un algorithme s’appelle la mémoïsation. 
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III) CALCUL DES VALEURS OPTIMALES : IMPLÉMENTATION TOP-DOWN 

Pour l’instant, nous nous concentrons sur le calcul des poids optimaux des sous-problèmes 
afin de remonter au poids optimum de la solution finale. 
 
Nous verrons plus tard comment identifier également les sommets de l’ensemble 
indépendant pondéré optimum à partir des valeurs des poids mémorisées (ce qu’on appelle 
la reconstruction de la solution optimale). 
 
L’implémentation récursive de l’algorithme avec mémoïsation est appelée top-down. 
 

Algorithme top-down pour le calcul des poids optimaux 

Entrée :  Un graphe de type chemin G avec l’ensemble de sommets {v1, v2, …, vn} et un 
poids non négatif wi pour chaque sommet vi. 

Sortie : Le poids total du meilleur ensemble indépendant pondéré 

A : = {0: 0, 1: w1}                                # poids des sous-problèmes 
 
rec_poids_MWIS(Gn) : 

Si n == 0 :opt 
Retourner A[0] 

Si n == 1 : 
Retourner A[1] 

 
Si A[n] déjà en cache : 

Retourner A[n] 
Sinon : 

S1 := rec_poids_MWIS(Gn-1) 
S2 := rec_poids_MWIS(Gn-2) + wn 
A[n] := max {S1, S2} 
Retourner A[n] 
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Le schéma de récursion avec le calcul des poids optimaux est représenté sur la figure 6 : 
- On descend tout d’abord l’arbre jusqu’à un cas de base. 
- Arrivé au cas de base (n = 0 ou n = 1), on attribue la valeur du poids de base : A[0] = 0 

ou A[1] = w1. 
- Si le dernier sommet du graphe de l’étape précédente n’a pas été gardé (cas n°1), 

alors on remonte la valeur sélectionnée (0 ou w1). 
- Si le dernier sommet du graphe de l’étape précédente a été gardé, alors on remonte 

la valeur sélectionnée (0 ou w1) + le poids du sommet qui a été gardé. 
- On compare les deux poids remontés et on garde celui qui a la valeur maximale 

(poids optimum) puis on l’enregistre dans la table des valeurs. 
- On applique la même méthode tout le long de la remontée de l’arbre. 

 

 
Figure 6 : Arbre de récursion avec calcul des poids optimaux 

III.1. Intérêt de la mémoïsation 

On remarque que le cas A[2] se présente deux fois, ce qui montre l’importance de la 
mémoïsation. Dans cet exemple simple, il n’y a qu’un seul cas qui se reproduit, mais on 
imagine facilement que ce nombre sera beaucoup plus grand dans des situations plus 
complexes. 
 
La table de mémoïsation nous donne les valeurs optimales des différents sous-problèmes : 

- Valeur du MWIS {} = A[0] = 0 
- Valeur du MWIS {A} = A[1] = 1 
- Valeur du MWIS {A, B} = A[2] = 4 
- Valeur du MWIS {A, B, C} = A[3] = 6 
- Valeur du MWIS {A, B, C, D} = A[4] = 8 

https://www.informatique-f1.fr/dp/MWIS/ 
 

https://www.informatique-f1.fr/dp/MWIS/
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Voici une implémentation Python qui retourne les poids optimaux dans un dictionnaire ‘A’ 
de l’ensemble des sous-problèmes du graphe : 
 

# graphe à traiter 
graphe = {"A":1, "B":4, "C":5, "D":4} 
 
def rec_poids_MWIS(G): 
    # Fonction récursive 
    def f_rec(Gi, i): 
        # Cas de base 
        if i < 2: 
            return A[i] 
 
        # Récursion sur les autres cas 
        if i in A.keys(): 
            return A[i] 
        else: 
            # Récupère wi 
            wi = list(Gi.values())[i-1] 
 
            # Construction de Gi-1 
            Gi = {cle: G[cle] for cle in list(G.keys())[0:i-1]} 
            S1 = f_rec(Gi,i-1) 
 
            # Construction de Gi-2 
            Gi.popitem() 
            S2 = f_rec(Gi,i-2) + wi 
 
            A[i] = max(S1,S2) 
            return A[i] 
 
    # Poids optimaux des cas de base 
    A = {0:0, 1:graphe["A"]} 
 
    # Appel de la fonction récursive 
    f_rec(G,len(G)) 
    return A 
 
A = rec_poids_MWIS(graphe) 

 
On obtient : A = {0: 0, 1: 1, 2: 4, 3: 6, 4: 8}  
 
Afin de montrer l’effet de la mémoïsation, nous allons maintenant appliquer notre 
algorithme sur un exemple un peu plus complexe, et récupérer le nombre total de 
récurrences rencontrées et le nombre total de cas qui ont été traités (hors cas de base). 
 
Le graphe traité est le suivant : 
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Voici le programme Python utilisé : 
 

def rec_poids_MWIS_avec_comptage(G): 
    # Fonction récursive 
    def f_rec(Gi, i): 
        # Comptage du nombre de récurences 
        global nbr_cas 
        global nbr_cas_hors_base 
 
        nbr_cas = nbr_cas + 1 
 
        # Cas de base 
        if i < 2: 
            return A[i] 
 
        # Récursion sur les autres cas 
        if i in A.keys(): 
            return A[i] 
        else: 
            # Incrémente le nombre de calculs hors cas de base 
            nbr_cas_hors_base = nbr_cas_hors_base + 1 
 
            # Récupère wi 
            wi = list(Gi.values())[i-1] 
 
            # Construction de Gi-1 
            Gi = {cle: G[cle] for cle in list(G.keys())[0:i-1]} 
            S1 = f_rec(Gi,i-1) 
 
            # Construction de Gi-2 
            Gi.popitem() 
            S2 = f_rec(Gi,i-2) + wi 
 
            A[i] = max(S1,S2) 
            return A[i] 
 
    # Poids optimaux des cas de base 
    A = {0:0, 1:graphe["A"]} 
 
    # Nombre de calculs 
    global nbr_cas 
    global nbr_cas_hors_base 
    nbr_cas = 0 
    nbr_cas_hors_base = 0 
 
    # Appel de la fonction récursive 
    f_rec(G,len(G)) 
    return A, nbr_cas, nbr_cas_hors_base 

 
# graphe à traiter 
graphe = {"A":3, "B":2, "C":1, "D":6, "E":4, "F":5} 
A, nbr_cas, nbr_cas_hors_base = rec_poids_MWIS_avec_comptage(graphe) 
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Les valeurs optimales des sous-problèmes obtenues sont les suivantes : 

A = {0: 0, 1: 3, 2: 3, 3: 4, 4: 9, 5: 9, 6: 14} 
 

De plus, les résultats montrent que le nombre de récurrences est de 11 et le nombre de cas 
traités (hors cas de base) est de 5. 
 
Le nombre total de récurrences est donc bien supérieur à 26/2 = 23 = 8 ce qui montre que 
sans mémoïsation l’algorithme aurait un temps d’exécution exponentiel. 
 
Le nombre de calculs effectués étant en O(n), et chaque calcul prenant un temps en O(1), on 
a bien un algorithme en O(n). 
 

III.2. Quelques remarques sur les algorithmes top-down 

On observe ici que, pour le problème de MWIS sur un graphe de type chemin, l’algorithme 
top-down avec mémoïsation explore en fait tous les sous-problèmes possibles : il effectue (n 
− 1) calculs « réels » parmi les (n + 1) sous-problèmes distincts (de G0 à Gn). Il résout donc 
exactement (n + 1) sous-problèmes, dont (n − 1) sont non triviaux, jamais moins. 
 
Il existe cependant de nombreux problèmes où l’utilisation d’algorithmes top-down avec 
mémoïsation permet aussi de réduire drastiquement le nombre de cas réellement calculés 
par rapport au nombre total de sous-problèmes. 
 
Voici quelques exemples dont certains sont référencés dans votre programme : 

- Le problème de partitionnement équilibré d’entiers positifs, qui consiste à découper 
un ensemble d’entiers positifs en deux sous-ensembles dont les sommes sont aussi 
proches que possible (idéalement égales) ; 

- Le problème du sac à dos, qui consiste à choisir, parmi des objets ayant chacun un 
poids et une valeur, un sous-ensemble qui rentre dans un sac de capacité limitée tout 
en maximisant la valeur totale. 

- Le problème de la distance d’édition de Levenshtein, qui consiste à mesurer à quel 
point deux chaînes de caractères sont différentes, en comptant le nombre minimal 
d’opérations (insertions, suppressions, substitutions) nécessaires pour transformer 
l’une en l’autre. 

- Le problème d’alignement de séquences (type Needleman–Wunsch), qui consiste à 
aligner deux séquences (par exemple d’ADN ou de caractères) en insérant 
éventuellement des « trous » afin de maximiser une mesure de similarité (ou 
minimiser un coût de différences). 

- Les algorithmes de plus courts chemins comme Bellman–Ford et Floyd–Warshall qui 
calculent les plus courts chemins entre des sommets d’un graphe (Bellman–Ford 
depuis une source vers tous les sommets, même avec des poids négatifs, et Floyd–
Warshall entre tous les couples de sommets). 

 
En conclusion, nous n’avons pas encore exploré tous les avantages des algorithmes top-
down ! 
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IV) CALCUL DES VALEURS OPTIMALES : IMPLÉMENTATION BOTTOM-UP 

Nous continuons de nous concentrer sur le calcul des poids optimaux des solutions aux sous-
problèmes afin de remonter au poids optimum de la solution finale. Cette fois nous allons 
explorer l’algorithme de type bottom-up. 
 
L’idée est ici de résoudre systématiquement l’ensemble des sous-problèmes un par un, mais 
en partant des cas de base. En effet, la solution d’un sous-problème dépend des solutions de 
deux sous-problèmes plus petits. Pour s’assurer que ces deux solutions soient 
immédiatement disponibles, on peut travailler de manière ascendante (bottom-up), en 
commençant par les cas de base et en construisant progressivement des sous-problèmes de 
plus en plus grands de manière itérative. 
 

Algorithme bottom-up pour le calcul des poids optimaux 

Entrée :  Un graphe de type chemin G avec l’ensemble de sommets {v1, v2, …, vn} et un 
poids non négatif wi pour chaque sommet vi. 

Sortie : Le poids total du meilleur ensemble indépendant pondéré 

A : = {0: 0, 1: w1}                                # poids des solutions sous-optimales 
 
Pour i allant de 2 à n : 

# Utilisation de l’équation de récurrence 
A[i] := max {A[i – 1], A[i – 2] + wi} 

 
Retourner A 

 
On pourrait également utiliser un tableau de valeurs de longueur (n + 1) et indexé de 0 à n 
pour enregistrer les poids optimaux. Au moment où une itération de la boucle principale doit 
calculer la solution du sous-problème A[i], les valeurs A[i−1] et A[i−2] des deux sous-
problèmes plus petits pertinents ont déjà été calculées lors des itérations précédentes (ou 
dans les cas de base). Ainsi, chaque itération de la boucle prend un temps O(1), pour un 
temps d’exécution ultra rapide en O(n). 
 
Par exemple, pour le graphe ci-dessous : 

 
… on obtient le tableau suivant : 

 
À la fin de l’algorithme, chaque case du tableau A[i] contient le poids total d’un MWIS du 
graphe Gi, qui est composé des i premiers sommets et des (i – 1) premières arêtes du graphe 
d’entrée. Dans l’exemple ci-dessus, le poids total d’un MWIS du graphe d’entrée original est 
la valeur de la dernière case du tableau (14), correspondant à l’ensemble indépendant 
constitué des premier, quatrième et sixième sommet. 
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Voici un exemple d’implémentation en Python : 

def poids_MWIS_bottom_up(G): 
    # Poids optimaux des cas de base 
    A = {0:0, 1:G["A"]} 
 
    for i in range(2, len(G)+1): 
        A[i] = max(A[i-1],A[i-2] + list(G.values())[i-1]) 
 
    return A 
 
# graphe à traiter 
graphe = {"A":3, "B":2, "C":1, "D":6, "E":4, "F":5} 
A = poids_MWIS_bottom_up(graphe) 

V) ALGORITHME DE RECONSTRUCTION 

Les algorithmes que nous avons vus ne calculent que les poids des sous-problèmes 
optimaux, et non pas le meilleur ensemble indépendant pondéré lui-même.  
 
L’approche pour obtenir le meilleur ensemble indépendant pondéré consiste à utiliser une 
étape de post-traitement pour le reconstruire à partir des valeurs optimales obtenues par 
les algorithmes précédents. 
 
Nous avons vu précédemment (voir II.1., aux pages 4 et 5) que deux cas sont possibles pour 
savoir si un sommet vn du graphe d’entrée G appartient à l’ensemble indépendant final 
optimal : 

- Si A[n - 1]  A[n - 2] + wn, cela signifie que la solution optimale de Gn-1 est également 
la solution de notre ensemble final optimum. Dans ce cas, on ne garde pas vn.  

- Sinon, cela signifie que la solution optimale de Gn-2  {vn} est également une solution 
optimale de notre ensemble final optimum. Dans ce cas, on garde vn. 

 
Figure 7 : Principe de reconstruction du graphe pondéré indépendant optimum 
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L’algorithme de reconstruction est le suivant : 

Algorithme de reconstruction de l’ensemble pondéré indépendant optimum 

Entrée :  le tableau A calculé par l’algorithme top-down ou bottom-up pour un graphe 
chemin G avec ensemble de sommets {v1, v2, …, vn} et un poids non négatif wi pour 
chaque sommet vi. 
Sortie : un ensemble indépendant de poids maximal de G. 

S :=                                                         # Enregistre les sommets de l’ensemble optimum 
i := n 
 

Tant que i  2 : 

Si A[i – 1]  A[i – 2]  + wi :              # Cas n°1 
i := i – 1                                   # Ne prend pas vi 

Sinon : 
S := S  {vi}                             # Cas n°2, on prend vi 
i := i – 2                                   # On exclut vi-1 

Si i == 1 :                                                   # Cas de base #2 
S := S  {v1} 
 

Inverser S 
Retourner S 

 
L’algorithme de reconstruction effectue un seul parcours en arrière sur le tableau A et passe 
un temps O(1) par itération de boucle, donc il s’exécute en temps O(n). 
 
Par exemple, pour le graphe d’entrée : 

 
… l’algorithme de reconstruction inclut v6 (ce qui force l’exclusion de v5), inclut v4 (ce qui 
force l’exclusion de v3), exclut v2 et inclut v1 : 

 
Ce qui conduit à la solution optimale {A, D, F}. 
 
Pour un même schéma de programmation dynamique, les versions top-down avec 
mémoïsation et bottom-up ont en général la même complexité asymptotique en pire cas, 
car elles résolvent le même ensemble de sous-problèmes. 
 
Toutefois, le top-down mémoisé ne calcule que les sous-problèmes effectivement atteints à 
partir du problème initial, ce qui fait qu’en pratique, il peut résoudre moins de cas que le 
bottom-up, qui remplit systématiquement toute la table. 
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Voici une implémentation en Python : 
 

def reconstruction(G,A): 
    S = [] 
    i = len(G) 
 
    while i >= 2: 
        if A[i-1] >= A[i-2] + list(G.values())[i-1]: 
            i = i-1 
        else: 
            S.append(list(G.keys())[i-1]) 
            i = i - 2 
 
    if i == 1: 
        S.append(list(G.keys())[0]) 
 
    return [S[i] for i in range(len(S)-1,-1,-1)] 
 
# graphe à traiter 
graphe = {"A":3, "B":2, "C":1, "D":6, "E":4, "F":5} 
A = poids_MWIS_bottom_up(graphe) 
S = reconstruction(graphe,A) 

 

VI) LES PRINCIPES DE LA PROGRAMMATION DYNAMIQUE 

Le concept général de la programmation dynamique peut se résumer en trois étapes. Il se 
comprend mieux à travers des exemples ; nous n’en avons pour l’instant qu’un seul, mais 
nous étudierons d’autres cas. 
 

Les trois grands principes de la programmation dynamique 

1. Identifier une collection relativement petite de sous-problèmes. 
 
2. Montrer comment résoudre rapidement et correctement les « grands » sous-

problèmes à partir des solutions des « plus petits ». 
 
3. Montrer comment déduire rapidement et correctement la solution finale à 

partir des solutions de tous les sous-problèmes. 

 
Une fois ces trois étapes mises en place, l’algorithme de programmation dynamique peut se 
mettre en place : on résout tous les sous-problèmes soit : 

- un par un, en allant soit du « plus petit » au « plus grand » (méthode de type bottom-
up itératif) ; 

- soit du « plus grand » au « plus petit » (méthode de type top-down récursive), puis 
on extrait la solution finale à partir de celles des sous-problèmes. 
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VI.1. Propriétés souhaitables des sous-problèmes 

La clé qui permet de débloquer tout le potentiel de la programmation dynamique pour 
résoudre un problème, c’est l’identification de la bonne collection de sous-problèmes. 
En supposant que l’on effectue au moins une quantité de travail constante pour résoudre 
chaque sous-problème, le nombre de sous-problèmes constitue une borne inférieure sur le 
temps d’exécution de notre algorithme. Ainsi, on aimerait que ce nombre soit aussi faible 
que possible. Par exemple, notre solution pour le meilleur chemin indépendant pondéré 
n’utilisait qu’un nombre linéaire de sous-problèmes, ce qui est généralement le meilleur 
scénario. 
 
De même, le temps nécessaire pour résoudre un sous-problème (étant données les solutions 
des plus petits sous-problèmes) et pour déduire la solution finale intervient aussi dans le 
temps d’exécution global de l’algorithme. 
 
Par exemple, supposons qu’un algorithme résolve au plus f(n) sous-problèmes différents (en 
les traitant systématiquement du « plus petit » au « plus grand »), en utilisant au plus g(n) de 
temps pour chacun, et effectue au plus h(n) de travail de post-traitement pour extraire la 
solution finale (où n désigne la taille de l’entrée). Le temps d’exécution de l’algorithme est 
alors au plus : 

( ) ( ) ( )
# sous-problèmes temps par sous-problème post-traitement

f n g n h n +  

 
Ces trois étapes demandent de garder respectivement f(n), g(n) et h(n) aussi petits que 
possible. Dans notre exemple de base, sans l’étape de post-traitement de reconstruction, on 
a f(n) = O(n), g(n) = O(1) et h(n) = O(1), soit un temps d’exécution global en O(n). Si l’on inclut 
l’étape de reconstruction, le terme h(n) passe à O(n), mais le temps d’exécution total O(n) × 
O(1) + O(n) = O(n) reste linéaire. 
 

VI.2. Programmation dynamique vs diviser pour régner 

On peut remarquer qu’il y a certaines similitudes entre la méthode « diviser pour régner » et 
la programmation dynamique, en particulier dans la formulation récursive top-down de 
cette dernière. Les deux méthodes résolvent récursivement des sous-problèmes plus petits 
et combinent leurs résultats pour obtenir une solution au problème initial. Voici six 
différences entre les usages typiques de ces deux méthodes : 
 
1. Chaque appel récursif d’un algorithme typique de type « diviser pour régner » se fixe une 

seule manière de découper l’entrée en sous-problèmes plus petits. Par exemple, dans 
l’algorithme de tri par fusion, chaque appel récursif divise son tableau d’entrée en moitié 
gauche et moitié droite. L’algorithme de tri rapide appelle une procédure de 
partitionnement pour choisir comment découper le tableau d’entrée en deux, puis se 
tient à cette division pour le reste de son exécution. 
Chaque appel récursif d’un algorithme de programmation dynamique, lui, garde ses 
options ouvertes : il considère plusieurs façons de définir des sous-problèmes plus petits 
et choisit la meilleure. Dans notre exemple d’illustration, chaque appel récursif choisit 
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entre un sous-problème avec un sommet en moins et un sous-problème avec deux 
sommets en moins. 
 

2. Comme chaque appel récursif d’un algorithme de programmation dynamique teste 
plusieurs choix de sous-problèmes plus petits, les mêmes sous-problèmes réapparaissent 
en général dans différents appels récursifs ; mettre en cache les solutions des sous-
problèmes devient alors une optimisation évidente. 
Dans la plupart des algorithmes de type « diviser pour régner », tous les sous-problèmes 
sont distincts et il n’y a aucun intérêt à mettre leurs solutions en cache. Par exemple, 
dans les algorithmes de tri par fusion et de tri rapide, chaque sous-problème correspond 
à un sous-tableau différent du tableau d’entrée. 
 

3. La plupart des applications « classiques » de la méthode « diviser pour régner » 
consistent à remplacer un algorithme simple en temps polynomial par une version plus 
rapide. Par exemple, l’algorithme de tri par fusion fait passer le temps d’exécution du tri 
d’un tableau de O(n²) à O(n log n). 
Les meilleurs algorithmes de la programmation dynamique, eux, sont des algorithmes en 
temps polynomial pour des problèmes d’optimisation dont les solutions naïves (comme 
la recherche exhaustive) nécessitent un temps exponentiel. 
 

4. Dans un algorithme « diviser pour régner », les sous-problèmes sont choisis 
principalement pour optimiser le temps d’exécution ; la validité des résultats se vérifie 
souvent assez facilement. Par exemple, l’algorithme de tri rapide trie toujours 
correctement le tableau d’entrée, quels que soient la qualité ou le choix de ses éléments 
pivots. 
En programmation dynamique, on choisit les sous-problèmes pour qu’ils soient 
mathématiquement suffisants pour reconstruire une solution optimale. Si on se trompe 
là-dessus, l’algorithme devient faux, même s’il est rapide. 
 

5. Dans un algorithme « diviser pour régner », on applique en général la récursion à des 
sous-problèmes dont la taille est au plus une fraction constante (par exemple 50 %) de la 
taille de l’entrée. 
La programmation dynamique, elle, n’a aucun scrupule à appeler la récursion sur des 
sous-problèmes à peine plus petits que l’entrée, si c’est nécessaire pour la correction. 
 

6. On peut voir la méthode « diviser pour régner » comme un cas particulier de la 
programmation dynamique, dans lequel chaque appel récursif choisit une collection fixe 
de sous-problèmes à résoudre récursivement. 
En tant que méthode plus sophistiquée, la programmation dynamique s’applique à une 
plus grande variété de problèmes que la méthode « diviser pour régner », mais elle est 
aussi plus exigeante techniquement à utiliser. 

 
Face à un nouveau problème à résoudre, s’il existe une solution évidente de type « diviser 
pour régner », il faut l’utiliser. Si toutes les tentatives pour trouver une solution « diviser 
pour régner » échouent, et surtout si elles échouent parce que l’étape de combinaison 
semble toujours nécessiter de refaire beaucoup de calculs depuis zéro, il est temps d’essayer 
la programmation dynamique. 


